Search results
Results From The WOW.Com Content Network
For an n-ary Boolean function, the inputs come from a domain that is itself a Cartesian product of binary sets corresponding to the input Boolean variables. For example for a binary function, f(A, B), the domain of f is A×B, which can be listed as: A×B = {(A = 0, B = 0), (A = 0, B = 1), (A = 1, B = 0), (A = 1, B = 1)}. Each element in the ...
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
The material conditional (also known as material implication) is an operation commonly used in logic.When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false.
A well-formed formula is any atomic formula, or any formula that can be built up from atomic formulas by means of operator symbols according to the rules of the grammar. The language L {\displaystyle {\mathcal {L}}} , then, is defined either as being identical to its set of well-formed formulas, [ 48 ] or as containing that set (together with ...
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula.
In words, [p, q, r] is equivalent to: "if q, then p, else r", or "p or r, according as q or not q". This may also be stated as "q implies p, and not q implies r". So, for any values of p, q, and r, the value of [p, q, r] is the value of p when q is true, and is the value of r otherwise. The conditioned disjunction is also equivalent to
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
The formulas will be certain expressions (that is, strings of symbols) over this alphabet. The formulas are inductively defined as follows: Each propositional variable is, on its own, a formula. If φ is a formula, then ¬φ is a formula. If φ and ψ are formulas, and • is any binary connective, then ( φ • ψ) is a formula.