When.com Web Search

  1. Ad

    related to: elliptical integral formula example math equation with steps

Search results

  1. Results From The WOW.Com Content Network
  2. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (c. 1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse .

  3. Legendre form - Wikipedia

    en.wikipedia.org/wiki/Legendre_form

    In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to which all others may be reduced. Legendre chose the name elliptic integrals because [1] the second kind gives the arc length of an ellipse of unit semi-major axis and eccentricity (the ellipse being defined parametrically by = ⁡ (), = ⁡ ()).

  4. Legendre's relation - Wikipedia

    en.wikipedia.org/wiki/Legendre's_relation

    where K and K′ are the complete elliptic integrals of the first kind for values satisfying k 2 + k′ 2 = 1, and E and E′ are the complete elliptic integrals of the second kind. This form of Legendre's relation expresses the fact that the Wronskian of the complete elliptic integrals (considered as solutions of a differential equation) is a ...

  5. Elliptic function - Wikipedia

    en.wikipedia.org/wiki/Elliptic_function

    The relation to elliptic integrals has mainly a historical background. Elliptic integrals had been studied by Legendre, whose work was taken on by Niels Henrik Abel and Carl Gustav Jacobi. Abel discovered elliptic functions by taking the inverse function of the elliptic integral function

  6. Landen's transformation - Wikipedia

    en.wikipedia.org/wiki/Landen's_transformation

    Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss .

  7. Carlson symmetric form - Wikipedia

    en.wikipedia.org/wiki/Carlson_symmetric_form

    In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa.

  8. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Composite Simpson's 3/8 rule is even less accurate. Integration by Simpson's 1/3 rule can be represented as a weighted average with 2/3 of the value coming from integration by the trapezoidal rule with step h and 1/3 of the value coming from integration by the rectangle rule with step 2h. The accuracy is governed by the second (2h step) term

  9. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals; Math Major: A Table of Integrals; O'Brien, Francis J. Jr. "500 Integrals of Elementary and Special Functions". Derived integrals of exponential, logarithmic functions and special functions.