When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Merge_algorithm

    In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.

  3. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).

  4. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.

  5. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Some programming languages utilize doubly subscripted arrays (or arrays of arrays) to represent an m-by-n matrix. Some programming languages start the numbering of array indexes at zero, in which case the entries of an m -by- n matrix are indexed by 0 ≤ i ≤ m − 1 {\displaystyle 0\leq i\leq m-1} and 0 ≤ j ≤ n − 1 {\displaystyle 0\leq ...

  7. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    Comparison of programming languages (array) Index origin, another difference between array types across programming languages; Matrix representation; Morton order, another way of mapping multidimensional data to a one-dimensional index, useful in tree data structures; CSR format, a technique for storing sparse matrices in memory

  8. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    This change gives the following algorithm (for a zero-based array). -- To shuffle an array a of n elements (indices 0..n-1): for i from n−1 down to 1 do j ← random integer such that 0 ≤ j ≤ i exchange a[j] and a[i] An equivalent version which shuffles the array in the opposite direction (from lowest index to highest) is:

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Here is the conjugate transpose of V (or simply the transpose, if V contains real numbers only), and I denotes the identity matrix (of some dimension). Comment: The diagonal elements of D are called the singular values of A .