Search results
Results From The WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then
The template for any binary confusion matrix uses the four kinds of results discussed above (true positives, false negatives, false positives, and true negatives) along with the positive and negative classifications.
These equations form the basis for the Gauss–Newton algorithm for a non-linear least squares problem. Note the sign convention in the definition of the Jacobian matrix in terms of the derivatives. Formulas linear in may appear with factor of in other articles or the literature.
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...
He also showed that weights, including negative weights, can be used to affect the statistics of the set. Julier also developed and examined techniques for generating sigma points to capture the third moment (the skew) of an arbitrary distribution and the fourth moment (the kurtosis) of a symmetric distribution.