When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    A manifold can be constructed by giving a collection of coordinate charts, that is, a covering by open sets with homeomorphisms to a Euclidean space, and patching functions [clarification needed]: homeomorphisms from one region of Euclidean space to another region if they correspond to the same part of the manifold in two different coordinate ...

  3. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    A topological space X is called locally Euclidean if there is a non-negative integer n such that every point in X has a neighborhood which is homeomorphic to real n-space R n. [2] A topological manifold is a locally Euclidean Hausdorff space. It is common to place additional requirements on topological manifolds.

  4. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed using only that a smooth manifold is a locally Euclidean topological space, for this result it is necessary to use that smooth manifolds are Hausdorff and paracompact. The reason is that the proof makes use of a partition of unity.

  5. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    In technical terms, a manifold is a topological space, such that each point has a neighborhood that is homeomorphic to an open subset of a Euclidean space. Manifolds can be classified by increasing degree of this "resemblance" into topological manifolds, differentiable manifolds, smooth manifolds, and analytic manifolds. However, none of these ...

  6. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.

  7. Nash embedding theorems - Wikipedia

    en.wikipedia.org/wiki/Nash_embedding_theorems

    The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]

  8. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale.

  9. Exotic R4 - Wikipedia

    en.wikipedia.org/wiki/Exotic_R4

    In mathematics, an exotic is a differentiable manifold that is homeomorphic (i.e. shape preserving) but not diffeomorphic (i.e. non smooth) to the Euclidean space. The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds.