Search results
Results From The WOW.Com Content Network
Then multiplying the numerator and denominator inside the square root by (1 + cos θ) and using Pythagorean identities leads to: = + . Also, if the numerator and denominator are both multiplied by (1 - cos θ), the result is:
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
In mathematical physics, the Hunter–Saxton equation [1] (+) =is an integrable PDE that arises in the theoretical study of nematic liquid crystals.If the molecules in the liquid crystal are initially all aligned, and some of them are then wiggled slightly, this disturbance in orientation will propagate through the crystal, and the Hunter–Saxton equation describes certain aspects of such ...
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...
The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics.The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics.
In the case of an infinitely extended planar surface, there are two dimensions in which the potential cannot change because of symmetry. Assuming these dimensions are the y and z dimensions, only the x dimension is left. Below is the Poisson–Boltzmann equation solved analytically in terms of a second order derivative with respect to x. [4]
In mathematics, the values of the trigonometric functions can be expressed approximately, as in (/), or exactly, as in (/) = /.While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots.
Since the time separation is infinitesimal and the cancelling oscillations become severe for large values of ẋ, the path integral has most weight for y close to x. In this case, to lowest order the potential energy is constant, and only the kinetic energy contribution is nontrivial.