Ad
related to: can you divide unlike terms with two factors examples worksheet math
Search results
Results From The WOW.Com Content Network
The difference of two squares can also be used as an arithmetical short cut. If two numbers (whose average is a number which is easily squared) are multiplied, the difference of two squares can be used to give you the product of the original two numbers. For example: = (+)
Division can be calculated with an abacus. [14] Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D ...
Terms are within the same expression and are combined by either addition or subtraction. For example, take the expression: + There are two terms in this expression. Notice that the two terms have a common factor, that is, both terms have an . This means that the common factor variable can be factored out, resulting in
If a > b, then replace a with a – b and divide the result by two until a becomes odd (as a and b are both odd, there is, at least, one division by 2). If a < b, then replace b with b – a and divide the result by two until b becomes odd. Now, a = b, and the greatest common divisor is .
The result R = 0 occurs if and only if the polynomial A has B as a factor. Thus long division is a means for testing whether one polynomial has another as a factor, and, if it does, for factoring it out. For example, if a root r of A is known, it can be factored out by dividing A by (x – r).
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out if a≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer.
By the above laws, one can add or subtract the same number to all three terms, or multiply or divide all three terms by same nonzero number and reverse all inequalities if that number is negative. Hence, for example, a < b + e < c is equivalent to a − e < b < c − e.