Search results
Results From The WOW.Com Content Network
Rayleigh scattering of that light off oxygen and nitrogen molecules, and; the response of the human visual system. The strong wavelength dependence of the Rayleigh scattering (~λ −4) means that shorter wavelengths are scattered more strongly than longer wavelengths. This results in the indirect blue and violet light coming from all regions ...
The scattering of two hydrogen atoms will disturb the state of each atom, resulting in one or both becoming excited, or even ionized, representing an inelastic scattering process. The term "deep inelastic scattering" refers to a special kind of scattering experiment in particle physics.
Forced Rayleigh scattering (FRS) is an experimental method in physics and chemistry based on light scattering and is usually used to measure diffusion on length scales of roughly 10 μm.
It might seem like a simple question. But the science behind a blue sky isn't that easy. For starters, it involves something called the Rayleigh effect, or Rayleigh scattering. But that same ...
The Rayleigh sky model describes the observed polarization pattern of the daytime sky. Within the atmosphere, Rayleigh scattering of light by air molecules, water, dust, and aerosols causes the sky's light to have a defined polarization pattern. The same elastic scattering processes cause the sky to be blue.
Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic dimension to its wavelength:
For example, in Rayleigh scattering, the intensity scattered at the forward and backward angles is greater than the intensity scattered sideways, so the forward differential scattering cross section is greater than the perpendicular differential cross section, and by adding all of the infinitesimal cross sections over the whole range of angles ...
Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. [1] In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon autocorrelation function (also known as photon correlation spectroscopy ...