Search results
Results From The WOW.Com Content Network
90-foot (27.43 m) radii on the elevated 4 ft 8 + 1 ⁄ 2 in (1,435 mm) standard gauge Chicago 'L'. There is no room for longer radii at this cross junction in the northwest corner of the Loop . The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions.
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. Using this term, one can calculate many things in the same way as for a round tube.
In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size. It was originally developed by German scientist Josef Sauter in the late 1920s. [1] [2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest. Several methods have been devised to obtain a good estimate ...
The following can be used to find the versine of a given constant radius curve: [2] The Hallade method is to use the chord to continuously measure the versine in an overlapping pattern along the curve. The versine values for the perfect circular curve would have the same number. [3]
Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...
The hydraulic diameter is similarly defined as 4 times the cross-sectional area of a pipe A, divided by its "wetted" perimeter P. For a circular pipe of radius R, at full flow, this is = = as one would expect. This is equivalent to the above definition of the 2D mean diameter.
= [4] for four-point bending test where the loading span is 1/3 of the support span (rectangular cross section) = [5] for three-point bending test (rectangular cross section) in these formulas the following parameters are used:
For example, all depths of cut in lathe work must account for whether they apply to the radius (that is, per side) or to the diameter (that is, total). Similarly, in shaft-straightening operations, where calibrated amounts of bending force are applied laterally to the shaft, the "total" emphasis corresponds to a bend of half that magnitude.