Search results
Results From The WOW.Com Content Network
The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:
At the regulatory site, the binding of a ligand may elicit amplified or inhibited protein function. [ 4 ] [ 22 ] The binding of a ligand to an allosteric site of a multimeric enzyme often induces positive cooperativity, that is the binding of one substrate induces a favorable conformation change and increases the enzyme's likelihood to bind to ...
In DNA-ligand binding studies, the ligand can be a small molecule, ion, [1] or protein [2] which binds to the DNA double helix. The relationship between ligand and binding partner is a function of charge, hydrophobicity, and molecular structure. Binding occurs by intermolecular forces, such as ionic bonds, hydrogen bonds and Van der Waals forces.
Molecular binding occurs in biological complexes (e.g., between pairs or sets of proteins, or between a protein and a small molecule ligand it binds) and also in abiologic chemical systems, e.g. as in cases of coordination polymers and coordination networks such as metal-organic frameworks.
The Hill equation reflects the occupancy of macromolecules: the fraction that is saturated or bound by the ligand. [1] [2] [nb 1] This equation is formally equivalent to the Langmuir isotherm. [3] Conversely, the Hill equation proper reflects the cellular or tissue response to the ligand: the physiological output of the system, such as muscle ...
However, for many cell surface receptors, ligand-receptor interactions are not directly linked to the cell's response. The activated receptor must first interact with other proteins inside the cell before the ultimate physiological effect of the ligand on the cell's behavior is produced. Often, the behavior of a chain of several interacting ...
It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as: R + L ⇌ RL. The reaction is characterized by the on-rate constant k on and the off-rate constant k off, which have units of M −1 s −1 and s −1, respectively. In equilibrium, the forward binding transition R + L → ...
The scheme below shows the dissociation pathway of a CO ligand in the cis and trans position to the X, followed by the association of ligand Y. This is an example of a dissociative mechanism, where an 18 e − complex loses a CO ligand, making a 16 e − intermediate , and a final complex of 18 e − results from an incoming ligand inserting in ...