Search results
Results From The WOW.Com Content Network
There, moist air is warmed by the Earth's surface, decreases in density and rises. A similar air mass rising on the other side of the equator forces those rising air masses to move poleward. The rising air creates a low pressure zone near the equator. As the air moves poleward, it cools, becomes denser, and descends at about the 30th parallel ...
Atmospheric convection is the vertical transport of heat and moisture in the atmosphere.It occurs when warmer, less dense air rises, while cooler, denser air sinks. This process is driven by parcel-environment instability, meaning that a "parcel" of air is warmer and less dense than the surrounding environment at the same altitude.
The Sun warms the ground, which in turn warms the air directly above it. The warmer air expands, becoming less dense than the surrounding air mass, and creating a thermal low. [15] [16] The mass of lighter air rises, and as it does, it cools by expansion at lower air pressures. It stops rising when it has cooled to the same temperature as the ...
The ascent of air rises into the upper troposphere to a height of 12–15 km (7.5–9.3 mi), after which air diverges outward from the ITCZ and towards the poles. [24] The top of the Hadley cell is set by the height of the tropopause as the stable stratosphere above prevents the continued ascent of air. [ 25 ]
The upper temperature level is given by the soil or water surface of the Earth, which absorbs the incoming sun radiation and warms up, evaporating water. The moist and warm air at the ground is lighter than its surroundings and rises up to the upper limit of the troposphere.
A warm front is a density discontinuity located at the leading edge of a homogeneous warm air mass, and is typically located on the equator-facing edge of an isotherm gradient. Warm fronts lie within broader troughs of low pressure than cold fronts , and move more slowly than the cold fronts which usually follow because cold air is denser and ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
The downward-moving exterior is caused by colder air being displaced at the top of the thermal. The size and strength of thermals are influenced by the properties of the lower atmosphere (the troposphere). When the air is cold, bubbles of warm air are formed by the ground heating the air above it and can rise like a hot air balloon. The air is ...