Search results
Results From The WOW.Com Content Network
In nonparametric statistics, a kernel is a weighting function used in non-parametric estimation techniques. Kernels are used in kernel density estimation to estimate random variables' density functions, or in kernel regression to estimate the conditional expectation of a random variable.
The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
Kernel (linear algebra) or null space, a set of vectors mapped to the zero vector; Kernel (category theory), a generalization of the kernel of a homomorphism; Kernel (set theory), an equivalence relation: partition by image under a function; Difference kernel, a binary equalizer: the kernel of the difference of two functions
The kernel is a subrng, and, more precisely, a two-sided ideal of R. Thus, it makes sense to speak of the quotient ring R / (ker f). The first isomorphism theorem for rings states that this quotient ring is naturally isomorphic to the image of f (which is a subring of S). (Note that rings need not be unital for the kernel definition).
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.
Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]
Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...
In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms. In that case, if f : X → Y is an arbitrary morphism in C, then a kernel of f is an equaliser of f and the zero morphism from X to Y. In symbols: ker(f) = eq(f, 0 XY) To be more explicit, the following universal property can be used.