When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).

  3. 142857 - Wikipedia

    en.wikipedia.org/wiki/142857

    If multiplying by an integer greater than 7, there is a simple process to get to a cyclic permutation of 142857. By adding the rightmost six digits (ones through hundred thousands) to the remaining digits and repeating this process until only six digits are left, it will result in a cyclic permutation of 142857: [ citation needed ]

  4. Long and short scales - Wikipedia

    en.wikipedia.org/wiki/Long_and_short_scales

    For powers of ten less than 9 (one, ten, hundred, thousand and million) the short and long scales are identical, but for larger powers of ten, the two systems differ in confusing ways. For identical names, the long scale grows by multiples of one million (10 6), whereas the short scale grows by multiples of one thousand (10 3).

  5. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.

  6. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic numbers, is:

  7. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    This is generally used to denote powers of 10. Where n is positive, this indicates the number of zeros after the number, and where the n is negative, this indicates the number of decimal places before the number. As an example: 10 5 = 100,000 [1] 10 −5 = 0.00001 [2]

  8. How To Write Numbers in Words on a Check - AOL

    www.aol.com/write-numbers-words-check-000044077.html

    Not to worry — here’s a quick breakdown of how to write numbers in words on a check. ... $1,750: One thousand, seven hundred fifty and 00/100. $47.99: Forty-seven and 99/100.

  9. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit. Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 ⁠ 1 / 2 ⁠ × 2 ⁠ 1 / 2 ⁠ = 11 ⁠ 1 / 4 ⁠