Search results
Results From The WOW.Com Content Network
In computer science, in-memory processing, also called compute-in-memory (CIM), or processing-in-memory (PIM), is a computer architecture in which data operations are available directly on the data memory, rather than having to be transferred to CPU registers first. [1]
In operating systems, memory management is the function responsible for managing the computer's primary memory. [1]: 105–208 The memory management function keeps track of the status of each memory location, either allocated or free. It determines how memory is allocated among competing processes, deciding which gets memory, when they receive ...
Memory management (also dynamic memory management, dynamic storage allocation, or dynamic memory allocation) is a form of resource management applied to computer memory.The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed.
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
Thrashing occurs when there are too many pages in memory, and each page refers to another page. Real memory reduces its capacity to contain all the pages, so it uses 'virtual memory'. When each page in execution demands that page that is not currently in real memory (RAM) it places some pages on virtual memory and adjusts the required page on RAM.
Initially, memory locations x and f both hold the value 0. The software thread running on processor #1 loops while the value of f is zero, then it prints the value of x. The software thread running on processor #2 stores the value 42 into x and then stores the value 1 into f. Pseudo-code for the two program fragments is shown below.
Memory ordering is the order of accesses to computer memory by a CPU. Memory ordering depends on both the order of the instructions generated by the compiler at compile time and the execution order of the CPU at runtime .
The read-of-non-persistent-write problem is found for lock-free programs on persistent memory. As compare-and-swap (CAS) operations do not persist the written values to persistent memory, the modified data can be made visible by the cache coherence protocol to a concurrent observer before the modified data can be observed by a crash observer at persistent memory.