When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.

  3. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number : Z + N = A . The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2 Z .

  4. List of elements by stability of isotopes - Wikipedia

    en.wikipedia.org/wiki/List_of_elements_by...

    The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. [1] Overall, there are 251 known stable isotopes in ...

  5. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    If too many of these neutrons are absorbed by other uranium-235 nuclei, a nuclear chain reaction occurs that results in a burst of heat or (in some circumstances) an explosion. In a nuclear reactor, such a chain reaction is slowed and controlled by a neutron poison, absorbing some of the free neutrons.

  6. Neutron–proton ratio - Wikipedia

    en.wikipedia.org/wiki/Neutron–proton_ratio

    The neutron–proton ratio (N/Z ratio or nuclear ratio) of an atomic nucleus is the ratio of its number of neutrons to its number of protons. Among stable nuclei and naturally occurring nuclei, this ratio generally increases with increasing atomic number. [1]

  7. Atomic number - Wikipedia

    en.wikipedia.org/wiki/Atomic_number

    The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (n p) or the number of protons found in the nucleus of every atom of that element.

  8. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    Since protons and neutrons are both baryons, the mass number A is identical with the baryon number B of the nucleus (and also of the whole atom or ion). The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N ...

  9. Four factor formula - Wikipedia

    en.wikipedia.org/wiki/Four_factor_formula

    The symbols are defined as: [3], and are the average number of neutrons produced per fission in the medium (2.43 for uranium-235). and are the microscopic fission and absorption thermal cross sections for fuel, respectively.