Search results
Results From The WOW.Com Content Network
The mechanism of this transformation is thought to proceed in a manner similar to the synthesis of alkenes through the Bamford–Stevens reaction; the decomposition of N-tosylhydrazones in the presence of base to generate diazocompounds which then release nitrogen gas, yielding a carbene, which then can be quenched with an electrophile.
Reduction of alkynes is a useful method for the stereoselective synthesis of disubstituted alkenes. If the cis -alkene is desired, hydrogenation in the presence of Lindlar's catalyst (a heterogeneous catalyst that consists of palladium deposited on calcium carbonate and treated with various forms of lead) is commonly used, though hydroboration ...
The Pauson–Khand (PK) reaction is a chemical reaction, described as a cycloaddition.In it, an alkyne, an alkene, and carbon monoxide combine into a α,β-cyclopentenone in the presence of a metal-carbonyl catalyst [1] [2] Ihsan Ullah Khand (1935–1980) discovered the reaction around 1970, while working as a postdoctoral associate with Peter Ludwig Pauson (1925–2013) at the University of ...
Selenoxide elimination (also called α-selenation) [1] is a method for the chemical synthesis of alkenes from selenoxides. It is most commonly used to synthesize α,β-unsaturated carbonyl compounds from the corresponding saturated analogues. [2] It is mechanistically related to the Cope reaction.
The Woodward cis-hydroxylation (also known as the Woodward reaction) is the chemical reaction of alkenes with iodine and silver acetate in wet acetic acid to form cis-diols. [1] [2] (conversion of olefin into cis-diol) The reaction is named after its discoverer, Robert Burns Woodward. The Woodward cis-hydroxylation
Other symmetrical alkenes were prepared similarly, e.g. from dihydrocivetone, adamantanone and benzophenone (the latter yielding tetraphenylethylene). A McMurry reaction using titanium tetrachloride and zinc is employed in the synthesis of a first-generation molecular motor. [7] McMurry coupling to a molecular motor
In organosulfur chemistry, the thiol-ene reaction (also alkene hydrothiolation) is an organic reaction between a thiol (R−SH) and an alkene (R 2 C=CR 2) to form a thioether (R−S−R'). This reaction was first reported in 1905, [ 1 ] but it gained prominence in the late 1990s and early 2000s for its feasibility and wide range of applications.
Hydroformylation of an alkene (R 1 to R 3 organyl groups (i. e. alkyl-or aryl group) or hydrogen). In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes (R−CH=O) from alkenes (R 2 C=CR 2).