Search results
Results From The WOW.Com Content Network
Ludwig Prandtl (4 February 1875 – 15 August 1953) [1] was a German fluid dynamicist, physicist and aerospace scientist. He was a pioneer in the development of rigorous systematic mathematical analyses which he used for underlying the science of aerodynamics, which have come to form the basis of the applied science of aeronautical engineering. [2]
A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).
In fluid dynamics, the mixing length model is a method attempting to describe momentum transfer by turbulence Reynolds stresses within a Newtonian fluid boundary layer by means of an eddy viscosity. The model was developed by Ludwig Prandtl in the early 20th century. [1]
If the Prandtl number is 1, the two boundary layers are the same thickness. If the Prandtl number is greater than 1, the thermal boundary layer is thinner than the velocity boundary layer. If the Prandtl number is less than 1, which is the case for air at standard conditions, the thermal boundary layer is thicker than the velocity boundary layer.
The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by
Paul Richard Heinrich Blasius (9 August 1883 – 24 April 1970) was a German fluid dynamics physicist.He was one of the first students of Prandtl.. Blasius provided a mathematical basis for boundary-layer drag but also showed as early as 1911 that the resistance to flow through smooth pipes could be expressed in terms of the Reynolds number for both laminar and turbulent flow.
In fluid mechanics the Prandtl condition was suggested by the German physicist Ludwig Prandtl to identify possible boundary layer separation points of incompressible fluid flows. [ 1 ] Prandtl condition-in normal shock
In 1904, German scientist Ludwig Prandtl pioneered boundary layer theory. He pointed out that fluids with small viscosity can be divided into a thin viscous layer (boundary layer) near solid surfaces and interfaces, and an outer layer where Bernoulli's principle and Euler equations apply. [18]