Search results
Results From The WOW.Com Content Network
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
In April 2004, research published in the journal Nature reported that below 4 K, synthetic boron-doped diamond is a bulk superconductor. [40] Superconductivity was later observed in heavily boron-doped films grown by various chemical vapor deposition techniques, and the highest reported transition temperature (by 2009) is 11.4 K.
Additionally, for a given fixed homologous temperature, two materials with different melting points would have similar diffusion-dependent deformation behaviour. For example, solder (T mp = 456 K) at 115 °C would have comparable mechanical properties to copper (T mp = 1358 K) at 881 °C, because they would both be at 0.85T mp despite being at ...
In 1948, the Celsius scale was recalibrated by assigning the triple point temperature of water the value of 0.01 °C exactly [35] and allowing the melting point at standard atmospheric pressure to have an empirically determined value (and the actual melting point at ambient pressure to have a fluctuating value) close to 0 °C.
At room temperature, diamonds do not react with any chemical reagents including strong acids and bases. In an atmosphere of pure oxygen, diamond has an ignition point that ranges from 690 °C (1,274 °F) to 840 °C (1,540 °F); smaller crystals tend to burn more easily. It increases in temperature from red to white heat and burns with a pale ...
{{Periodic table (melting point)|state=expanded}} or {{Periodic table (melting point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for T c and P c is indicated by the number of digits.
A unit increment of one kelvin is exactly 1.8 times one degree Rankine; thus, to convert a specific temperature on the Kelvin scale to the Rankine scale, x K = 1.8 x °R, and to convert from a temperature on the Rankine scale to the Kelvin scale, x °R = x /1.8 K. Consequently, absolute zero is "0" for both scales, but the melting point of ...