Search results
Results From The WOW.Com Content Network
The following proof shows that the polynomials obtained from the Rodrigues' formula obey the second order differential equation just given. This proof repeatedly uses the fact that the second derivative of B(x) and the first derivative of A(x) are constants.
The problem, as translated into English by Ivor Thomas, states: [9] If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four herds of different colours, one milk white, another a glossy black, a third yellow and the last dappled.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
Sharper results can be said if one resorts to more powerful theorems regarding the estimates of zeros of polynomials (more concretely, the Parabola Theorem of Saff and Varga, or differential equations techniques). [2]: 88 [7] One result is the following: [8]
Elimination theory culminated with the work of Leopold Kronecker, and finally Macaulay, who introduced multivariate resultants and U-resultants, providing complete elimination methods for systems of polynomial equations, which are described in the chapter on Elimination theory in the first editions (1930) of van der Waerden's Moderne Algebra.
A trigonometric equation is an equation g = 0 where g is a trigonometric polynomial. Such an equation may be converted into a polynomial system by expanding the sines and cosines in it (using sum and difference formulas), replacing sin(x) and cos(x) by two new variables s and c and adding the new equation s 2 + c 2 – 1 = 0.
If we put t = q α and let q tend to 1 the Macdonald polynomials become Jack polynomials when the root system is of type A, and Heckman–Opdam polynomials for more general root systems. For the affine root system A 1, the Macdonald polynomials are the Rogers polynomials. For the non-reduced rank 1 affine root system of type (C ∨