When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. bcrypt - Wikipedia

    en.wikipedia.org/wiki/Bcrypt

    The salt is typically a random value. The bcrypt function uses these inputs to compute a 24-byte (192-bit) hash. The final output of the bcrypt function is a string of the form: $2<a/b/x/y>$[cost]$[22 character salt][31 character hash] For example, with input password abc123xyz, cost 12, and a random salt, the output of bcrypt is the string

  3. List of hash functions - Wikipedia

    en.wikipedia.org/wiki/List_of_hash_functions

    hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...

  4. Hash function - Wikipedia

    en.wikipedia.org/wiki/Hash_function

    In a hash table, a hash function takes a key as an input, which is associated with a datum or record and used to identify it to the data storage and retrieval application. The keys may be fixed-length, like an integer, or variable-length, like a name. In some cases, the key is the datum itself.

  5. crypt (C) - Wikipedia

    en.wikipedia.org/wiki/Crypt_(C)

    crypt is a POSIX C library function. It is typically used to compute the hash of user account passwords. The function outputs a text string which also encodes the salt (usually the first two characters are the salt itself and the rest is the hashed result), and identifies the hash algorithm used (defaulting to the "traditional" one explained below).

  6. Comparison of cryptographic hash functions - Wikipedia

    en.wikipedia.org/wiki/Comparison_of...

    The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.

  7. MD4 - Wikipedia

    en.wikipedia.org/wiki/MD4

    The MD4 Message-Digest Algorithm is a cryptographic hash function developed by Ronald Rivest in 1990. [3] The digest length is 128 bits. The algorithm has influenced later designs, such as the MD5, SHA-1 and RIPEMD algorithms.

  8. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    It is not intended to be a cryptographically secure hash function; it was designed to protect against accidental errors, not malicious attacks. Most credit card numbers and many government identification numbers use the algorithm as a simple method of distinguishing valid numbers from mistyped or otherwise incorrect numbers.

  9. Cryptographic hash function - Wikipedia

    en.wikipedia.org/wiki/Cryptographic_hash_function

    A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following properties: Pre-image resistance Given a hash value h, it should be difficult to find any message m such that h = hash(m).