When.com Web Search

  1. Ad

    related to: schwarzschild tensor vanishes 3 minute

Search results

  1. Results From The WOW.Com Content Network
  2. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    In deriving the Schwarzschild metric, it was assumed that the metric was vacuum, spherically symmetric and static. The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows

  3. Kretschmann scalar - Wikipedia

    en.wikipedia.org/wiki/Kretschmann_scalar

    where is the Ricci curvature tensor and is the Ricci scalar curvature (obtained by taking successive traces of the Riemann tensor). The Ricci tensor vanishes in vacuum spacetimes (such as the Schwarzschild solution mentioned above), and hence there the Riemann tensor and the Weyl tensor coincide, as do their invariants.

  4. Asymptotically flat spacetime - Wikipedia

    en.wikipedia.org/wiki/Asymptotically_flat_spacetime

    But another well known generalization of the Schwarzschild vacuum, the Taub–NUT space, is not asymptotically flat. An even simpler generalization, the de Sitter-Schwarzschild metric solution, which models a spherically symmetric massive object immersed in a de Sitter universe , is an example of an asymptotically simple spacetime which is not ...

  5. Schwarzschild coordinates - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_coordinates

    Here, saying that = is irrotational means that the vorticity tensor of the corresponding timelike congruence vanishes; thus, this Killing vector field is hypersurface orthogonal. The fact that our spacetime admits an irrotational timelike Killing vector field is in fact the defining characteristic of a static spacetime .

  6. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.

  7. Eddington–Finkelstein coordinates - Wikipedia

    en.wikipedia.org/wiki/Eddington–Finkelstein...

    Schwarzschild solution in Schwarzschild coordinates, with two space dimensions suppressed, leaving just the time t and the distance from the center r. In red the incoming null geodesics. In blue outcoming null geodesics. In green the null light cones on which borders light moves, while massive objects move inside the cones.

  8. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]

  9. Vacuum solution (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Vacuum_solution_(general...

    Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term (and thus, the lambdavacuums can be taken as cosmological models). More generally, a vacuum region in a Lorentzian manifold is a region in which the Einstein tensor vanishes.

  1. Ad

    related to: schwarzschild tensor vanishes 3 minute