Search results
Results From The WOW.Com Content Network
Given its greater H + concentration, the formula yields a lower pH value for the weak base. However, pH of bases is usually calculated in terms of the OH − concentration. This is done because the H + concentration is not a part of the reaction, whereas the OH − concentration is. The pOH is defined as:
The concentration of hydroxide ions can be expressed in terms of pOH, which is close to (14 − pH), [note 3] so the pOH of pure water is also close to 7. Addition of a base to water will reduce the hydrogen cation concentration and therefore increase the hydroxide ion concentration (decrease pH, increase pOH) even if the base does not itself ...
pOH is sometimes used as a measure of the concentration of hydroxide ions, OH −. By definition, pOH is the negative logarithm (to the base 10) of the hydroxide ion concentration (mol/L). pOH values can be derived from pH measurements and vice-versa. The concentration of hydroxide ions in water is related to the concentration of hydrogen ions by
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Water samples that are exposed to air will absorb some carbon dioxide to form carbonic acid (H 2 CO 3) and the concentration of H 3 O + will increase due to the reaction H 2 CO 3 + H 2 O = HCO 3 − + H 3 O +. The concentration of OH − will decrease in such a way that the product [H 3 O +][OH −] remains constant for fixed temperature and ...
However, for aqueous solutions, the Henry's law solubility constant for many species goes through a minimum. For most permanent gases, the minimum is below 120 °C. Often, the smaller the gas molecule (and the lower the gas solubility in water), the lower the temperature of the maximum of the Henry's law constant.
H 2 O ⇌ OH − (aq) + H + (aq) In pure water, there is an equal number of hydroxide and H + ions, so it is a neutral solution. At 25 °C (77 °F), pure water has a pH of 7 and a pOH of 7 (this varies when the temperature changes: see self-ionization of water). A pH value less than 7 indicates an acidic solution, and a pH value more than 7 ...
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]