Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
A right triangle with the hypotenuse c. In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem. It states that the sum of the two legs squared ...
There are no Pythagorean triangles in which the hypotenuse and one leg are the legs of another Pythagorean triangle; this is one of the equivalent forms of Fermat's right triangle theorem. [12]: p. 14 Each primitive Pythagorean triangle has a ratio of area, K, to squared semiperimeter, s, that is unique to itself and is given by [22]
The legs and hypotenuse of a right triangle satisfy the Pythagorean theorem: the sum of the areas of the squares on two legs is the area of the square on the hypotenuse, + =. If the lengths of all three sides of a right triangle are integers, the triangle is called a Pythagorean triangle and its side lengths are collectively known as a ...
In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem [1] or the upside down Pythagorean theorem [2]) is as follows: [3] Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
Triangle area property: The area of a triangle can be as large as we please. Three points property: Three points either lie on a line or lie on a circle. Pythagoras' theorem: In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides. [1] An easy formula for these properties is that in any ...