When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    In graph theory, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. [ 1 ]

  3. Template : Did you know nominations/Handshaking lemma

    en.wikipedia.org/.../Handshaking_lemma

    Language links are at the top of the page across from the title.

  4. Double counting (proof technique) - Wikipedia

    en.wikipedia.org/wiki/Double_counting_(proof...

    In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands; for this reason, the result is known as the handshaking lemma. To prove this by double counting, let () be the degree of vertex . The number of vertex-edge incidences in the graph may be ...

  5. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group of people, the number of people who have shaken hands with an odd ...

  6. List of lemmas - Wikipedia

    en.wikipedia.org/wiki/List_of_lemmas

    Burnside's lemma also known as the Cauchy–Frobenius lemma; Frattini's lemma (finite groups) Goursat's lemma; Mautner's lemma (representation theory) Ping-pong lemma (geometric group theory) Schreier's subgroup lemma; Schur's lemma (representation theory) Zassenhaus lemma

  7. Lemma (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Lemma_(mathematics)

    In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem " or an "auxiliary theorem".

  8. Sperner's lemma - Wikipedia

    en.wikipedia.org/wiki/Sperner's_lemma

    In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. [1] It states that every Sperner coloring (described below) of a triangulation of an n {\displaystyle n} -dimensional simplex contains a cell whose vertices all have different colors.

  9. Johnson–Lindenstrauss lemma - Wikipedia

    en.wikipedia.org/wiki/Johnson–Lindenstrauss_lemma

    In mathematics, the Johnson–Lindenstrauss lemma is a result named after William B. Johnson and Joram Lindenstrauss concerning low-distortion embeddings of points from high-dimensional into low-dimensional Euclidean space.