Ads
related to: trigonometric graphs grade 10 pdf
Search results
Results From The WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles.
The mathematics of trigonometry and exponentials are related but not exactly the same; exponential notation emphasizes the whole, whereas cis x and cos x + i sin x notations emphasize the parts. This can be rhetorically useful to mathematicians and engineers when discussing this function, and further serve as a mnemonic (for cos + i sin ).
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
2.3 Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship. ... Download as PDF; Printable version; In other projects ...
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since sin ( x ) = cos ( x − π / 2 ) , {\displaystyle \sin(x)=\cos(x-\pi /2),} the case of a sine can be omitted from this definition.
Sine function on unit circle (top) and its graph (bottom) The trigonometric functions cosine and sine of angle θ may be defined on the unit circle as follows: If (x, y) is a point on the unit circle, and if the ray from the origin (0, 0) to (x, y) makes an angle θ from the positive x-axis, (where counterclockwise turning is positive), then
Sine and Cosine Function Graphs 2 3.5 Sinusoidal Functions 2 3.6 Sinusoidal Function Transformations 2 3.7 Sinusoidal Function Context and Data Modeling 2 3.8 The Tangent Function 2 3.9 Inverse Trigonometric Functions 2 3.10 Trigonometric Equations and Inequalities 3 3.11 The Secant, Cosecant, and Cotangent Functions 2 3.12