Ads
related to: solve equations using angle relationships
Search results
Results From The WOW.Com Content Network
The fact that the triple-angle formula for sine and cosine only involves powers of a single function allows one to relate the geometric problem of a compass and straightedge construction of angle trisection to the algebraic problem of solving a cubic equation, which allows one to prove that trisection is in general impossible using the given tools.
Assume that two sides b, c and the angle β are known. The equation for the angle γ can be implied from the law of sines: [5] = . We denote further D = c / b sin β (the equation's right side). There are four possible cases:
Use Napier's rules to solve the triangle ABD: use c and B to find the sides AD and BD and the angle ∠BAD. Then use Napier's rules to solve the triangle ACD: that is use AD and b to find the side DC and the angles C and ∠DAC. The angle A and side a follow by addition.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.