When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    If the PID controller parameters (the gains of the proportional, integral and derivative terms) are chosen incorrectly, the controlled process input can be unstable; i.e., its output diverges, with or without oscillation, and is limited only by saturation or mechanical breakage.

  3. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    All principal ideal domains are integrally closed. The previous three statements give the definition of a Dedekind domain, and hence every principal ideal domain is a Dedekind domain. Let A be an integral domain, the following are equivalent. A is a PID. Every prime ideal of A is principal. [13] A is a Dedekind domain that is a UFD.

  4. Principal ideal - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal

    A ring in which every ideal is principal is called principal, or a principal ideal ring. A principal ideal domain (PID) is an integral domain in which every ideal is principal. Any PID is a unique factorization domain; the normal proof of unique factorization in the integers (the so-called fundamental theorem of arithmetic) holds in any PID.

  5. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    The class number of a number field is by definition the order of the ideal class group of its ring of integers. Thus, a number field has class number 1 if and only if its ring of integers is a principal ideal domain (and thus a unique factorization domain). The fundamental theorem of arithmetic says that Q has class number 1.

  6. Elementary divisors - Wikipedia

    en.wikipedia.org/wiki/Elementary_divisors

    In algebra, the elementary divisors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R {\displaystyle R} is a PID and M {\displaystyle M} a finitely generated R {\displaystyle R} -module, then M is isomorphic to a finite direct sum of the form

  7. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal , and can be obtained from the original matrix by multiplying on the left and right by invertible square ...

  8. Structure theorem for finitely generated modules over a ...

    en.wikipedia.org/wiki/Structure_theorem_for...

    In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization.

  9. Piping and instrumentation diagram - Wikipedia

    en.wikipedia.org/wiki/Piping_and_instrumentation...

    The identifications consist of up to 5 letters. The first identification letter is for the measured value, the second is a modifier, 3rd indicates passive/readout function, 4th - active/output function, and the 5th is the function modifier. This is followed by loop number, which is unique to that loop.