Search results
Results From The WOW.Com Content Network
The asymptotic throughput (less formal asymptotic bandwidth) for a packet-mode communication network is the value of the maximum throughput function, when the incoming network load approaches infinity, either due to a message size, [3] or the number of data sources. As other bit rates and data bandwidths, the asymptotic throughput is measured ...
Throughput is controlled by available bandwidth, as well as the available signal-to-noise ratio and hardware limitations. Throughput for the purpose of this article will be understood to be measured from the arrival of the first bit of data at the receiver, to decouple the concept of throughput from the concept of latency.
The ISQ symbols for the bit and byte are bit and B, respectively.In the context of data-rate units, one byte consists of 8 bits, and is synonymous with the unit octet.The abbreviation bps is often used to mean bit/s, so that when a 1 Mbps connection is advertised, it usually means that the maximum achievable bandwidth is 1 Mbit/s (one million bits per second), which is 0.125 MB/s (megabyte per ...
The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate. The use of decimal prefixes is standard in data communications.
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...
When talking about circuit bit rates, people will interchangeably use the terms throughput, bandwidth and speed, and refer to a circuit as being a '64 k' circuit, or a '2 meg' circuit — meaning 64 kbit/s or 2 Mbit/s (see also the List of connection bandwidths). However, a '64 k' circuit will not transmit a '64 k' file in one second.
Link throughput ≈ Bitrate × Transmission time / roundtrip time. The message delivery time or latency over a network depends on the message size in bit, and the network throughput or effective data rate in bit/s, as: Message delivery time = Message size / Network throughput
The link spectral efficiency of a digital communication system is measured in bit/s/Hz, [2] or, less frequently but unambiguously, in (bit/s)/Hz.It is the net bit rate (useful information rate excluding error-correcting codes) or maximum throughput divided by the bandwidth in hertz of a communication channel or a data link.