When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.

  3. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Stellar evolution is not studied by observing the life of a single star, as most stellar changes occur too slowly to be detected, even over many centuries. Instead, astrophysicists come to understand how stars evolve by observing numerous stars at various points in their lifetime, and by simulating stellar structure using computer models.

  4. CNO cycle - Wikipedia

    en.wikipedia.org/wiki/CNO_cycle

    During a star's evolution, convective mixing episodes moves material, within which the CNO cycle has operated, from the star's interior to the surface, altering the observed composition of the star. Red giant stars are observed to have lower carbon-12/carbon-13 and carbon-12/nitrogen-14 ratios than do main sequence stars, which is considered to ...

  5. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...

  6. Asymptotic giant branch - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_giant_branch

    The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars.This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses [citation needed]) late in their lives.

  7. Stellar collision - Wikipedia

    en.wikipedia.org/wiki/Stellar_collision

    Any stars in the universe can collide, whether they are "alive", meaning fusion is still active in the star, or "dead", with fusion no longer taking place. White dwarf stars, neutron stars , black holes , main sequence stars , giant stars , and supergiants are very different in type, mass, temperature, and radius, and accordingly produce ...

  8. Silicon-burning process - Wikipedia

    en.wikipedia.org/wiki/Silicon-burning_process

    In astrophysics, silicon burning is a very brief [1] sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8–11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the fuels that power them for their long lives in the main sequence on the Hertzsprung–Russell diagram.

  9. Star - Wikipedia

    en.wikipedia.org/wiki/Star

    The energy produced by stars, a product of nuclear fusion, radiates to space as both electromagnetic radiation and particle radiation. The particle radiation emitted by a star is manifested as the stellar wind, [173] which streams from the outer layers as electrically charged protons and alpha and beta particles. A steady stream of almost ...