Ads
related to: calculate focal length lens
Search results
Results From The WOW.Com Content Network
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.
A 100 mm focal length f /4 lens has an entrance pupil diameter of 25 mm. A 100 mm focal length f /2 lens has an entrance pupil diameter of 50 mm. Since the area is proportional to the square of the pupil diameter, [6] the amount of light admitted by the f /2 lens is four times that of the f /4 lens.
35 mm equivalent focal lengths are calculated by multiplying the actual focal length of the lens by the crop factor of the sensor. Typical crop factors are 1.26× – 1.29× for Canon (1.35× for Sigma "H") APS-H format, 1.5× for Nikon APS-C ("DX") format (also used by Sony, Pentax, Fuji, Samsung and others), 1.6× for Canon APS-C format, 2× for Micro Four Thirds format, 2.7× for 1-inch ...
Numerical aperture of a thin lens. Numerical aperture is not typically used in photography. Instead, the angular aperture of a lens (or an imaging mirror) is expressed by the f-number, written f /N, where N is the f-number given by the ratio of the focal length f to the diameter of the entrance pupil D: =.
For the purposes of ray tracing, this is equivalent to a series of identical thin lenses of focal length f = R/2, each separated from the next by length d. This construction is known as a lens equivalent duct or lens equivalent waveguide.
Notice that the shorter the focal length and the larger the angle of view, perspective distortion and size differences increase. Lenses are often referred to by terms that express their angle of view: Fisheye lenses, typical focal lengths are between 8 mm and 10 mm for circular images, and 15–16 mm for full-frame images. Up to 180° and beyond.
The depth of field, and thus hyperfocal distance, changes with the focal length as well as the f-stop. This lens is set to the hyperfocal distance for f /32 at a focal length of 100 mm. In optics and photography, hyperfocal distance is a distance from a lens beyond which all objects can be brought into an "acceptable" focus.
The f-number (also called the ' relative aperture '), N, is defined by N = f / E N, where f is the focal length and E N is the diameter of the entrance pupil. [2] Increasing the focal length of a lens (i.e., zooming in) will usually cause the f-number to increase, and the entrance pupil location to move further back along the optical axis.