Search results
Results From The WOW.Com Content Network
The angular diameter, angular size, apparent diameter, or apparent size is an angular separation (in units of angle) describing how large a sphere or circle appears from a given point of view. In the vision sciences , it is called the visual angle , and in optics , it is the angular aperture (of a lens ).
Angular field of view is typically specified in degrees, while linear field of view is a ratio of lengths. For example, binoculars with a 5.8 degree (angular) field of view might be advertised as having a (linear) field of view of 102 mm per meter. As long as the FOV is less than about 10 degrees or so, the following approximation formulas ...
In photographic optics, the Zeiss formula is a supposed formula for computing a circle of confusion (CoC) criterion for depth of field (DoF) calculations. The formula is c = d / 1730 {\displaystyle c=d/1730} , where d {\displaystyle d} is the diagonal measure of a camera format, film, sensor, or print, and c {\displaystyle c} the maximum ...
In 1916, Northey showed how to calculate the angle of view using ordinary carpenter's tools. [2] The angle that he labels as the angle of view is the half-angle or "the angle that a straight line would take from the extreme outside of the field of view to the center of the lens;" he notes that manufacturers of lenses use twice this angle.
The macula corresponds to the central 17 degrees diameter of the visual field; the fovea to the central 5.2 degrees, and the foveola to 1–1.2 degrees diameter. [ 10 ] [ 11 ] [ 12 ] Note that in the clinical literature the fovea can refer to the central 1–1.2 deg, i.e. what is otherwise known as the foveola, and can be referred to as the ...
This latter effect is known as field-of-view crop. The format size ratio (relative to the 35 mm film format) is known as the field-of-view crop factor, crop factor, lens factor, focal-length conversion factor, focal-length multiplier, or lens multiplier.
Circle-of-confusion calculations: An early precursor to depth of field calculations is the TH (1866, p. 138) calculation of a circle-of-confusion diameter from a subject distance, for a lens focused at infinity; this article was pointed out by von Rohr (1899). The formula he comes up with for what he terms "the indistinctness" is equivalent, in ...
The resulting image however will have a different field of view. If the focal length is altered to maintain the field of view, while holding the f-number constant, the change in focal length will counter the decrease of DOF from the smaller sensor and increase the depth of field (also by the crop factor).