Ad
related to: convert g to mg calculator
Search results
Results From The WOW.Com Content Network
It is the number of Nitrogens x 56.1 (Mwt of KOH) x 1000 (convert to milligrams) divided by molecular mass of the amine functional compound. So using Tetraethylenepentamine (TEPA) as an example: Mwt = 189, number of nitrogen atoms = 5 So 5 x 1000 x 56.1/189 = 1484. So the Amine Value of TEPA = 1484
The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes. For example, a gigagram ( Gg ) or 10 9 g is 10 3 tonnes, commonly called a kilotonne .
The volume and normality of the sodium hydroxide are used, along with the weight of the sample, to calculate the free fatty acid value. [3] Acid value is usually measured as milligrams of KOH per gram of sample (mg KOH/g fat/oil), or grams of KOH per gram of sample (g KOH/g fat/oil). [5]
The table below lists units supported by {{convert}}. More complete lists are linked for each dimension. ... g oz; milligram: mg mg 1.0 ...
An earlier definition, used especially for chemical elements, holds that an equivalent is the amount of a substance that will react with 1 g (0.035 oz) of hydrogen, 8 g (0.28 oz) of oxygen, or 35.5 g (1.25 oz) of chlorine—or that will displace any of the three.
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...
For example, 50 g of zinc will react with oxygen to produce 62.24 g of zinc oxide, implying that the zinc has reacted with 12.24 g of oxygen (from the Law of conservation of mass): the equivalent weight of zinc is the mass which will react with eight grams of oxygen, hence 50 g × 8 g/12.24 g = 32.7 g.
For example: An acceleration of 1 g equates to a rate of change in velocity of approximately 35 km/h (22 mph) for each second that elapses. Therefore, if an automobile is capable of braking at 1 g and is traveling at 35 km/h, it can brake to a standstill in one second and the driver will experience a deceleration of 1 g. The automobile ...