When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root of 5 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_5

    The approximation ⁠ 161 / 72 ⁠ (≈ 2.23611) for the square root of five can be used. Despite having a denominator of only 72, it differs from the correct value by less than ⁠ 1 / 10,000 ⁠ (approx. 4.3 × 10 −5). As of January 2022, the numerical value in decimal of the square root of 5 has been computed to at least 2,250,000,000,000 ...

  3. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    Quadratic formula. The roots of the quadratic function y = ⁠ 1 2 ⁠x2 − 3x + ⁠ 5 2 ⁠ are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  4. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Square root. Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 55, or 52 (5 squared). In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1] For example, 4 and −4 are square roots of 16 ...

  5. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Descartes' rule of signs. In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients ...

  7. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas relate the polynomial coefficients to signed sums of products of the roots r1, r2, ..., rn as follows: Vieta's formulas can equivalently be written as for k = 1, 2, ..., n (the indices ik are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the ...

  8. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio's negative −φ and reciprocal φ−1 are the two roots of the quadratic polynomial x2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial. This quadratic polynomial has two roots, and. The golden ratio is also closely related to the polynomial.

  9. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [1] In the table below, the label "Undefined" represents a ratio If the codomain of the trigonometric functions is taken to be the real numbers these entries ...