When.com Web Search

  1. Ads

    related to: methods of multiplying numbers

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.

  3. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    Some of the algorithms Trachtenberg developed are ones for general multiplication, division and addition. Also, the Trachtenberg system includes some specialised methods for multiplying small numbers between 5 and 13. The section on addition demonstrates an effective method of checking calculations that can also be applied to multiplication.

  4. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Many common methods for multiplying numbers using pencil and paper require a multiplication table of memorized or consulted products of small numbers (typically any two numbers from 0 to 9). However, one method, the peasant multiplication algorithm, does not. The example below illustrates "long multiplication" (the "standard algorithm", "grade ...

  5. Ancient Egyptian multiplication - Wikipedia

    en.wikipedia.org/.../Ancient_Egyptian_multiplication

    In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, is a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add.

  6. Chisanbop - Wikipedia

    en.wikipedia.org/wiki/Chisanbop

    With the chisanbop method it is possible to represent all numbers from 0 to 99 with the hands, rather than the usual 0 to 10, and to perform the addition, subtraction, multiplication and division of numbers. [4] The system has been described as being easier to use than a physical abacus for students with visual impairments. [5]

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal, meaning that any algorithm for that task would require () elementary operations.