Search results
Results From The WOW.Com Content Network
In organic chemistry, olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. [ 1 ] [ 2 ] Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative ...
The reaction is an example of cross metathesis. The utility of the reaction is driven by the low cost of ethylene as a reagent and its selectivity. It produces compounds with terminal alkene functional groups (α-olefins), which are more amenable to other reactions such as polymerization and hydroformylation. The general reaction equation is:
Grubbs catalysts are of interest for olefin metathesis. [25] [26] It is mainly applied to fine chemical synthesis. Large-scale commercial applications of olefin metathesis almost always employ heterogeneous catalysts or ill-defined systems based on ruthenium trichloride. [6]
In addition to sigma-bond metathesis, olefin metathesis is used to synthesize various carbon-carbon pi bonds. Neither sigma-bond metathesis or olefin metathesis change the oxidation state of the metal. [20] [21] Many other methods are used to form new carbon-carbon bonds, including beta-hydride elimination and insertion reactions.
The mechanism of homogeneous ring-opening metathesis polymerization is well-studied. It is similar to any olefin metathesis reaction. Initiation occurs by forming an open coordination site on the catalyst. Propagation happens via a metallacycle intermediate formed after a 2+2 cycloaddition. When using a G3 catalyst, 2+2 cycloaddition is the ...
Grubbs's main research interests were in organometallic chemistry and synthetic chemistry, particularly the development of novel catalysts for olefin metathesis. In olefin metathesis, a catalyst is used to break the bonds of carbon molecules, which can then re-form to create chemical bonds in new ways, producing new compounds with unique ...
The metal-mediated processes include a carbonyl-olefination and an olefin–olefin metathesis event. There are two general mechanistic schemes to perform this overall transformation: one, reaction of a [M=CHR 1] reagent with an alkene to generate a new metal alkylidene, which then couples with a carbonyl group to form the desired substituted alkene and an inactive [M=O] species (type A); two ...
Besides olefin metathesis (described above), many pericyclic reactions can be used such as the ene reaction and the Cope rearrangement. Cope rearrangement of divinylcyclobutane to cyclooctadiene In the Diels–Alder reaction , a cyclohexene derivative is prepared from a diene and a reactive or electron-deficient alkene.