Search results
Results From The WOW.Com Content Network
Analogous to straight line segments above, one can also define arcs as segments of a curve. In one-dimensional space, a ball is a line segment. An oriented plane segment or bivector generalizes the directed line segment. Beyond Euclidean geometry, geodesic segments play the role of line segments.
Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and is the (oriented) angle from the x-axis to this segment. It may be useful to express the equation in terms of the angle α = φ + π / 2 {\displaystyle \alpha =\varphi +\pi /2} between the x -axis and the line.
An angle equal to 1 / 4 turn (90° or π / 2 radians) is called a right angle. Two lines that form a right angle are said to be normal, orthogonal, or perpendicular. [7] An angle larger than a right angle and smaller than a straight angle (between 90° and 180°) is called an obtuse angle [6] ("obtuse" meaning "blunt").
In geometry, an arrangement of lines is the subdivision of the Euclidean plane formed by a finite set of lines. An arrangement consists of bounded and unbounded convex polygons, the cells of the arrangement, line segments and rays, the edges of the arrangement, and points where two or more lines cross, the vertices of the arrangement.
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...
Two line segments meet at every endpoint, and there are no other points of intersection between the line segments. No proper subset of the line segments has the same properties. [2] The qualifier simple is sometimes omitted, with the word polygon assumed to mean a simple polygon. [3] The line segments that form a polygon are called its edges or ...
The two bimedians of a quadrilateral (segments joining midpoints of opposite sides) and the line segment joining the midpoints of the diagonals are concurrent and are all bisected by their point of intersection. [3]: p.125 In a tangential quadrilateral, the four angle bisectors concur at the center of the incircle. [4]