Search results
Results From The WOW.Com Content Network
The bacterial DNA is not packaged using histones to form chromatin as in eukaryotes but instead exists as a highly compact supercoiled structure, the precise nature of which remains unclear. [6] Most bacterial chromosomes are circular, although some examples of linear chromosomes exist (e.g. Borrelia burgdorferi). Usually, a single bacterial ...
Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]
Morphology of a male skeleton shrimp, Caprella mutica Morphology in biology is the study of the form and structure of organisms and their specific structural features. [1]This includes aspects of the outward appearance (shape, structure, color, pattern, size), i.e. external morphology (or eidonomy), as well as the form and structure of internal parts like bones and organs, i.e. internal ...
Bacteriology is the branch and specialty of biology that studies the morphology, ecology, genetics and biochemistry of bacteria as well as many other aspects related to them. This subdivision of microbiology involves the identification, classification, and characterization of bacterial species. [ 1 ]
Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.
Bacteria, the most prominent type, have several different shapes, although most are spherical or rod-shaped. Bacteria can be classed as either gram-positive or gram-negative depending on the cell wall composition. Gram-positive bacteria have a thicker peptidoglycan layer than gram-negative bacteria.
The reason for this is the differences in species concepts between the bacteria and macro-organisms, the difficulties in growing/characterising in pure culture (a prerequisite to naming new species, vide supra) and extensive horizontal gene transfer blurring the distinction of species. [89]
Cyanobacterial morphology refers to the form or shape of cyanobacteria. Cyanobacteria are a large and diverse phylum of bacteria defined by their unique combination of pigments and their ability to perform oxygenic photosynthesis. [2] [3] Cyanobacteria often live in colonial aggregates that can take a multitude of forms. [3]