Search results
Results From The WOW.Com Content Network
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
In prokaryotes (bacteria and archaea), translation occurs in the cytosol, where the large and small subunits of the ribosome bind to the mRNA. In eukaryotes, translation occurs in the cytoplasm or across the membrane of the endoplasmic reticulum through a process called co-translational translocation.
The cytoplasm, the cytoplasmic membrane and the cell wall are subcellular localizations, whereas the extracellular environment is clearly not. Most Gram-negative bacteria also contain an outer membrane and periplasmic space. Unlike eukaryotes, most bacteria contain no membrane-bound organelles, however there are some exceptions (i.e ...
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
While prokaryotes are able to undergo both cellular processes simultaneously, the spatial separation that is provided by the nuclear membrane prevents this coupling in eukaryotes. Eukaryotic elongation factor 2 (eEF2) is a regulateable GTP -dependent translocase that moves nascent polypeptide chains from the A-site to the P-site in the ribosome.
Electron micrographs of stained cell-free protein synthesis reactions revealed branched assemblies in which strings of ribosomes are linked to a central DNA fibre. [27] DNA isolated from bacterial cells co-sediment with ribosomes, further supporting the conclusion that transcription and translation occur together. [26]
The bacterial cell wall differs from that of all other organisms by the presence of peptidoglycan which is located immediately outside of the cell membrane. Peptidoglycan is made up of a polysaccharide backbone consisting of alternating N-Acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) residues in equal amounts.
Another involves a two-step activity in which the proteins are first transported out of the inner cell membrane, then deposited in the periplasm, and finally through the outer cell membrane into the host cell. [2] These major differences can be distinguished between Gram-negative diderm bacteria and Gram-positive monoderm bacteria. But the ...