Search results
Results From The WOW.Com Content Network
All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.
Stars and planets rotate in the first place because conservation of angular momentum turns random drifting of parts of the molecular cloud that they form from into rotating motion as they coalesce. Given this average rotation of the whole body, internal differential rotation is caused by convection in stars which is a movement of mass, due to ...
Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise.
The more distant planets retrograde more frequently, as they do not move as much in their orbits while Earth completes an orbit itself. The retrograde motion of a hypothetical extremely distant (and nearly non-moving) planet would take place during a half-year, with the planet's apparent yearly motion being reduced to a parallax ellipse.
WASP-17b is thought to have a retrograde orbit (with a sky-projected inclination of the orbit normal against the stellar spin axis of about 149°, [11] not to be confused with the line-of-sight inclination of the orbit, given in the table, which is near 90° for all transiting planets), which would make it the first planet discovered to have such an orbital motion.
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.
All celestial objects – planets, stars , galaxies, black holes – spin. [1] [2] [3] The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such. The boundaries are mathematical surfaces, or sets of points in spacetime, relevant to analysis of the black hole's properties and interactions.
In Mercury's case, the planet completes three rotations for every two revolutions around the Sun, a 3:2 spin–orbit resonance. In the special case where an orbit is nearly circular and the body's rotation axis is not significantly tilted, such as the Moon, tidal locking results in the same hemisphere of the revolving object constantly facing ...