When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...

  3. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.

  4. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    a 0-sphere is a pair of points ⁠ {, +} ⁠, and is the boundary of a line segment (⁠ ⁠-ball). a 1-sphere is a circle of radius ⁠ ⁠ centered at ⁠ ⁠, and is the boundary of a disk (⁠ ⁠-ball).

  5. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so. [2]

  6. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  7. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...

  8. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    The volume of a spherical cap with a curved base can be calculated by considering two spheres with radii and , separated by some distance , and for which their surfaces intersect at =. That is, the curvature of the base comes from sphere 2.

  9. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.