Ads
related to: laser scanning confocal microscope uses chart- Get a Cost Estimate
High-Content Imaging System
Scalable High Throughput
- Explore Imaging Solutions
Simplify Research
With the Right Solution
- Applications
Cellular Imaging Applications
And Techniques
- 0% Financing
Exclusive Offer
High-content Imaging Solutions
- 3D Imaging & Analysis
Improve data quality & throughput.
Generate actionable data faster.
- GxP Compliance Solutions
GMP/GLP labs
Achieve full GxP compliance
- Get a Cost Estimate
geospatial.trimble.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
Laser scanning is the controlled deflection of laser beams, visible or invisible. [1] Scanned laser beams are used in some 3-D printers, in rapid prototyping, in machines for material processing, in laser engraving machines, in ophthalmological laser systems for the treatment of presbyopia, in confocal microscopy, in laser printers, in laser shows, in Laser TV, and in barcode scanners.
Similar to confocal microscopy, the laser in CLE filtered by the pinhole excites the fluorescent dye through a beam splitter and objective lens. The fluorescent emission then follows similar paths into the detector. A pinhole is used to select emissions from the desired focal plane. Two categories of CLE exist, namely probe-based (pCLE) and the ...
In table-top confocal microscopes the scanning is usually performed using bulky galvanometer or resonant scanning mirrors. Endomicroscopes either have a miniaturised scanning head at the distal tip of the imaging probe, or perform the scanning outside of the patient and use an imaging fibre bundle to transfer the scan pattern to the tissue. [3]
Two-photon excitation microscopy of mouse intestine.Red: actin.Green: cell nuclei.Blue: mucus of goblet cells.Obtained at 780 nm using a Ti-sapphire laser.. Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness.
It uses the technique of confocal laser scanning microscopy for diagnostic imaging of the retina or cornea of the human eye. As a method used to image the retina with a high degree of spatial sensitivity, it is helpful in the diagnosis of glaucoma, macular degeneration, and other retinal disorders.