When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  3. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector space formed by geometric vectors is called a Euclidean vector space, and a vector space formed by tuples is called a coordinate vector space. Many vector spaces are considered in mathematics, such as extension fields , polynomial rings , algebras and function spaces .

  5. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.

  6. Dimension (vector space) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(vector_space)

    A diagram of dimensions 1, 2, 3, and 4. In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. [1] [2] It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.

  7. Edge and vertex spaces - Wikipedia

    en.wikipedia.org/wiki/Edge_and_vertex_spaces

    The edge space is the /-vector space freely generated by the edge set E. The dimension of the vertex space is thus the number of vertices of the graph, while the dimension of the edge space is the number of edges. These definitions can be made more explicit.

  8. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    With componentwise addition and scalar multiplication, it is a real vector space. Every n-dimensional real vector space is isomorphic to it. With the dot product (sum of the term by term product of the components), it is an inner product space. Every n-dimensional real inner product space is isomorphic to it. As every inner product space, it is ...

  9. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .