Search results
Results From The WOW.Com Content Network
Physical geodesy is the study of the physical properties of Earth's gravity and its potential field (the geopotential), with a view to their application in geodesy. Measurement procedure [ edit ]
In geophysics and physical geodesy, a geopotential model is the theoretical analysis of measuring and calculating the effects of Earth's gravitational field (the geopotential). The Earth is not exactly spherical, mainly because of its rotation around the polar axis that makes its shape slightly oblate.
GeographicLib provides a utility GeoidEval (with source code) to evaluate the geoid height for the EGM84, EGM96, and EGM2008 Earth gravity models. Here is an online version of GeoidEval . The Tracker Component Library from the United States Naval Research Laboratory is a free Matlab library with a number of gravitational synthesis routines.
Geopotential is the potential of the Earth's gravity field.For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation.
Heritage surveying methods found elevation differences from a local horizontal determined by the spirit level, plumb line, or an equivalent device that depends on the local gravity field (see physical geodesy). As a result, the elevations in the data are referenced to the geoid, a surface that is not readily found using satellite geodesy. The ...
Geodesy is an earth science and many consider the study of Earth's shape and gravity to be central to that science. It is also a discipline of applied mathematics . Geodynamical phenomena, including crustal motion, tides , and polar motion , can be studied by designing global and national control networks , applying space geodesy and ...
Modern geodesy tends to retain the ellipsoid of revolution as a reference ellipsoid and treat triaxiality and pear shape as a part of the geoid figure: they are represented by the spherical harmonic coefficients , and , respectively, corresponding to degree and order numbers 2.2 for the triaxiality and 3.0 for the pear shape.
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...