Search results
Results From The WOW.Com Content Network
Banach's match problem is a classic problem in probability attributed to Stefan Banach. Feller [ 1 ] says that the problem was inspired by a humorous reference to Banach's smoking habit in a speech honouring him by Hugo Steinhaus , but that it was not Banach who set the problem or provided an answer.
All superlative indices produce similar results and are generally the favored formulas for calculating price indices. [14] A superlative index is defined technically as "an index that is exact for a flexible functional form that can provide a second-order approximation to other twice-differentiable functions around the same point." [15]
If the estimation is inadequate, we have to return to step one and attempt to build a better model. The data they used were from a gas furnace. These data are well known as the Box and Jenkins gas furnace data for benchmarking predictive models. Commandeur & Koopman (2007, §10.4) [2] argue that the Box–Jenkins approach is fundamentally ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the array containing the E(x, y) values, we then choose the minimal value in the last row, let it be E(x 2, y 2), and follow the path of computation backwards, back to the row number 0. If the field we arrived at was E(0, y 1), then T[y 1 + 1] ... T[y 2] is a substring of T with the minimal edit distance to the pattern P.
In statistics and research design, an index is a composite statistic – a measure of changes in a representative group of individual data points, or in other words, a compound measure that aggregates multiple indicators. [1] [2] Indices – also known as indexes and composite indicators – summarize and rank specific observations. [2]
The Ljung–Box test (named for Greta M. Ljung and George E. P. Box) is a type of statistical test of whether any of a group of autocorrelations of a time series are different from zero. Instead of testing randomness at each distinct lag, it tests the "overall" randomness based on a number of lags, and is therefore a portmanteau test .
Following a top-down design, the problem at hand is reduced into smaller and smaller subproblems, until only simple statements and control flow constructs remain. Nassi–Shneiderman diagrams reflect this top-down decomposition in a straightforward way, using nested boxes to represent subproblems.