When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response. [ 8 ] [ 9 ] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent ; use of the theorem may in some cases be more convenient ...

  3. Bridge circuit - Wikipedia

    en.wikipedia.org/wiki/Bridge_circuit

    Per Thévenin's theorem, finding the Thévenin equivalent circuit which is connected to the bridge load R 5 and using the arbitrary current flow I 5, we have: Thevenin Source (V th) is given by the formula: = (+ +)

  4. Source transformation - Wikipedia

    en.wikipedia.org/wiki/Source_transformation

    In general, the concept of source transformation is an application of Thévenin's theorem to a current source, or Norton's theorem to a voltage source. However, this means that source transformation is bound by the same conditions as Thevenin's theorem and Norton's theorem; namely that the load behaves linearly, and does not contain dependent ...

  5. Léon Charles Thévenin - Wikipedia

    en.wikipedia.org/wiki/Léon_Charles_Thévenin

    Thévenin's theorem Léon Charles Thévenin ( French: [tev(ə)nɛ̃] ; 30 March 1857, Meaux , Seine-et-Marne – 21 September 1926, Paris ) was a French telegraph engineer who extended Ohm's law to the analysis of complex electrical circuits .

  6. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    If the network is particularly simple or only a specific current or voltage is required then ad-hoc application of some simple equivalent circuits may yield the answer without recourse to the more systematic methods. Nodal analysis: The number of voltage variables, and hence simultaneous equations to solve, equals the number of nodes minus one ...

  7. Thousands of Problems for Theorem Provers - Wikipedia

    en.wikipedia.org/wiki/Thousands_of_Problems_for...

    TPTP (Thousands of Problems for Theorem Provers) [1] is a freely available collection of problems for automated theorem proving. It is used to evaluate the efficacy of automated reasoning algorithms. [2] [3] [4] Problems are expressed in a simple text-based format for first order logic or higher-order logic. [5]

  8. Extra element theorem - Wikipedia

    en.wikipedia.org/wiki/Extra_element_theorem

    The Extra Element Theorem (EET) is an analytic technique developed by R. D. Middlebrook for simplifying the process of deriving driving point and transfer functions for linear electronic circuits. [1] Much like Thévenin's theorem, the extra element theorem breaks down one complicated problem into several simpler ones.

  9. Surface equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Surface_equivalence_principle

    The principle yields an equivalent problem for a radiation problem by introducing an imaginary closed surface and fictitious surface current densities. It is an extension of Huygens–Fresnel principle, which describes each point on a wavefront as a spherical wave source.