Ads
related to: decision tree example attributes
Search results
Results From The WOW.Com Content Network
A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes).
Potential ID3-generated decision tree. Attributes are arranged as nodes by ability to classify examples. Values of attributes are represented by branches. In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset.
For example, suppose that one is building a decision tree for some data describing the customers of a business. Information gain is often used to decide which of the attributes are the most relevant, so they can be tested near the root of the tree.
Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.
For example, suppose that we are building a decision tree for some data describing a business's customers. Information gain ratio is used to decide which of the attributes are the most relevant. These will be tested near the root of the tree. One of the input attributes might be the customer's telephone number. This attribute has a high ...
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
[37] [3] For example, following the path that a decision tree takes to make its decision is quite trivial, but following the paths of tens or hundreds of trees is much harder. To achieve both performance and interpretability, some model compression techniques allow transforming a random forest into a minimal "born-again" decision tree that ...