Search results
Results From The WOW.Com Content Network
A regular hexagon has Schläfli symbol {6} [2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges.. A regular hexagon is defined as a hexagon that is both equilateral and equiangular.
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram , which has the same vertices as a pentagon , but connects alternating vertices. For an n -sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as { n / m }.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle , quadrilateral and nonagon are exceptions, although the regular forms trigon , tetragon , and enneagon are sometimes encountered as well.
A regular hexagram, , can be seen as a compound composed of an upwards (blue here) and downwards (pink) facing equilateral triangle, with their intersection as a regular hexagon (in green). A hexagram or sexagram is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}.
Polygons have been known since ancient times. The regular polygons were known to the ancient Greeks, with the pentagram, a non-convex regular polygon (star polygon), appearing as early as the 7th century B.C. on a krater by Aristophanes, found at Caere and now in the Capitoline Museum. [40] [41]
The symmetry group of a snowflake is D 6, a dihedral symmetry, the same as for a regular hexagon.. In mathematics, a dihedral group is the group of symmetries of a regular polygon, [1] [2] which includes rotations and reflections.
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
When the tessellation is made of regular polygons, the most common notation is the vertex configuration, which is simply a list of the number of sides of the polygons around a vertex. The square tiling has a vertex configuration of 4.4.4.4, or 4 4. The tiling of regular hexagons is noted 6.6.6, or 6 3. [18]