Search results
Results From The WOW.Com Content Network
The Pearson symbol, or Pearson notation, is used in crystallography as a means of describing a crystal structure. [1] It was originated by W. B. Pearson and is used extensively in Pearson's handbook of crystallographic data for intermetallic phases. [2] The symbol is made up of two letters followed by a number. For example: Diamond structure, cF8
For example, symbols P 6 m2 and P 6 2m denote two different space groups. This also applies to symbols of space groups with odd-order axes 3 and 3. The perpendicular symmetry elements can go along unit cell translations b and c or between them. Space groups P321 and P312 are examples of the former and the latter cases, respectively.
In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following: C n (for cyclic) indicates that the group has an n-fold rotation axis. C nh is C n with the addition of a mirror (reflection) plane perpendicular to the axis of rotation.
The body of the tables contain the characters in the respective irreducible representations for each respective symmetry operation, or set of symmetry operations. The symbol i used in the body of the table denotes the imaginary unit: i 2 = −1. Used in a column heading, it denotes the operation of inversion.
For example, 4 1 /a means that the crystallographic axis in question contains both a 4 1 screw axis as well as a glide plane along a. In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry ...
Microcline, an example of the triclinic crystal system Triclinic (a ≠ b ≠ c ≠ a and α, β, γ, 90° pairwise different) In crystallography, the triclinic (or anorthic) crystal system is one of the seven crystal systems. A crystal system is described by three basis vectors.
However, in crystallography, there is additional translational symmetry, and point groups are not enough to describe the full symmetry of crystals, so the full space group is usually used instead. The naming of full space groups usually follows another common convention, the Hermann–Mauguin notation , also known as the international notation.
Planes with different Miller indices in cubic crystals Examples of directions. Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices. In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers h, k, and ℓ, the Miller indices.