When.com Web Search

  1. Ad

    related to: numerical methods for solving odes 5th

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  3. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    Predictor–corrector methods for solving ODEs [ edit ] When considering the numerical solution of ordinary differential equations (ODEs) , a predictor–corrector method typically uses an explicit method for the predictor step and an implicit method for the corrector step.

  4. Cash–Karp method - Wikipedia

    en.wikipedia.org/wiki/Cash–Karp_method

    In numerical analysis, the Cash–Karp method is a method for solving ordinary differential equations (ODEs). It was proposed by Professor Jeff R. Cash [1] from Imperial College London and Alan H. Karp from IBM Scientific Center. The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function ...

  5. Dormand–Prince method - Wikipedia

    en.wikipedia.org/wiki/Dormand–Prince_method

    In numerical analysis, the Dormand–Prince (RKDP) method or DOPRI method, is an embedded method for solving ordinary differential equations (ODE). [1] The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions.

  6. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Explicit methods calculate the state of a system at a later time from the state of the system at the current time, while implicit methods find a solution by solving an equation involving both the current state of the system and the later one.

  7. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .

  8. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Numerical methods for ordinary differential equations — the numerical solution of ordinary differential equations (ODEs) Euler method — the most basic method for solving an ODE; Explicit and implicit methods — implicit methods need to solve an equation at every step; Backward Euler method — implicit variant of the Euler method

  9. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    Diagonally Implicit Runge–Kutta (DIRK) formulae have been widely used for the numerical solution of stiff initial value problems; [6] the advantage of this approach is that here the solution may be found sequentially as opposed to simultaneously. The simplest method from this class is the order 2 implicit midpoint method.