Search results
Results From The WOW.Com Content Network
The simplest extension of optical coherence applies optical concepts to matter waves. For example, when performing the double-slit experiment with atoms instead of light waves, a sufficiently collimated atomic beam creates a coherent atomic wave-function illuminating both slits. [ 22 ]
Optical coherence tomogram of a fingertip. It is possible to observe the sweat glands, having "corkscrew appearance" Interferometric reflectometry of biological tissue, especially of the human eye using short-coherence-length light (also referred to as partially-coherent, low-coherence, or broadband, broad-spectrum, or white light) was investigated in parallel by multiple groups worldwide ...
In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics.
The most important features of the light source are its wavelength and coherence length. The coherence length determines the width of the correlogram, which relies on the spectral width of the light source, as well as on structural aspects such as the spatial coherence of the light source and the numerical aperture (NA) of the optical system ...
Major study in optical physics is also devoted to quantum optics and coherence, and to femtosecond optics. [1] In optical physics, support is also provided in areas such as the nonlinear response of isolated atoms to intense, ultra-short electromagnetic fields, the atom-cavity interaction at high fields, and quantum properties of the ...
Classical optical experiments like Young's double slit experiment and Mach-Zehnder interferometry are characterized only by the first order coherence. The 1956 Hanbury Brown and Twiss experiment brought to light a different kind of correlation between fields, namely the correlation of intensities, which correspond to second order coherences. [ 2 ]
Any dissimilarity between the optical fields will decrease the visibility from the ideal. In this sense, the visibility is a measure of the coherence between two optical fields. A theoretical definition for this is given by the degree of coherence. This definition of interference directly applies to the interference of water waves and electric ...
The speckle effect is a result of the interference of many waves of the same frequency, having different phases and amplitudes, which add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly.